Introduction to Statistics

Table of contents

1	Introduction to Statistics	1
2	Why Do We Need Statistics?	2
3	Importance of Sampling	2
4	Population vs. Sample	3
5	Methods of Collecting Data	3
6	Types of Variables	4
7	Measures of Central Tendency 1/3	4
8	Measures of Central Tendency 2/3	4
9	Measures of Central Tendency 3/3 9.1 When to use each measure	5
10	Measures of Dispersion 1/2	5
11	Measures of Dispersion 2/2 11.1 When to use each measure	6
12	Setting-up R & RStudio & Google Colab	7

1 Introduction to Statistics

Statistics is the science of collecting, analyzing, interpreting, presenting, and organizing data.

- Descriptive Statistics: Summarize and interpret data to provide meaningful insights.
- Inferential Statistics: Make predictions about a population based on sample data.

2 Why Do We Need Statistics?

- Data-Driven Decision Making: Provides a basis for informed decisions.
- Understanding Trends: Helps identify patterns and trends.
- Predict Future Events: Allows for forecasting.
- Scientific Research: Essential in hypothesis testing and experimentation.

3 Importance of Sampling

- Efficiency: It's often impractical to collect data from an entire population.
 - Example: Surveying all 7,000 AUC students vs. a sample of 100 students.
- Cost-Effectiveness: Sampling can be less expensive.
 - **Example**: Reduced cost in time and resources for surveying a smaller sample.
- Accuracy: Proper sampling techniques can yield highly accurate estimates.

- **Example**: A well-designed survey of 100 students can accurately reflect the opinions of all 7,000 students.

4 Population vs. Sample

• **Population**: The entire group that is the subject of the study.

- Example: All 7,000 students at AUC

- **Notation**: N for size, μ for mean, σ for standard deviation

• Sample: A subset of the population used for making inferences about the population.

- Example: A survey of 100 AUC students

- **Notation**: n for size, \bar{x} for mean, s for standard deviation

5 Methods of Collecting Data

• Surveys: Questionnaires or interviews.

• Observations: Systematic observation and recording.

• Experiments: Controlled settings to observe effects.

• Archival Data: Existing records and databases.

6 Types of Variables

- Quantitative Variables: Numeric data that can be measured.
 - Continuous: Can take any value within a range (e.g., GPA).
 - **Discrete**: Specific, countable values (e.g., Number of Courses).
- Qualitative Variables: Descriptive, non-numeric data.
- Nominal: Categories without order (e.g., Majors).
- Ordinal: Categories with order but not equally spaced (e.g., Class Standing: Freshman, Sophomore, etc.).

7 Measures of Central Tendency 1/3

- Mean: The average of all data points.
 - Population Mean: $\mu = \frac{\sum_{i=1}^{N} x_i}{N}$
 - * Example: Average GPA of all 7,000 AUC students is $\mu = 3.5$
 - Sample Mean: $\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$
 - * Example: Average GPA of a sampled 100 AUC students is $\bar{x} = 3.48$

8 Measures of Central Tendency 2/3

- Median: Middle value when data is sorted
 - Steps to find Median:
 - * Sort the data in ascending order

 - · If n is odd, the median is the value at $\frac{n+1}{2}$ th position · If n is even, the median is the average of values at $\frac{n}{2}$ and $\frac{n}{2}+1$ positions
- Mode: The most frequently occurring value.

9 Measures of Central Tendency 3/3

9.1 When to use each measure

- Use the mean for normally distributed data
- Use the median when the data is skewed or has outliers
- Use the mode when dealing with categorical data

10 Measures of Dispersion 1/2

• Range: Difference between the highest and lowest values.

- Example: highest GPA: 4.0, lowest GPA: 2.9

* Range: 4.0 - 2.9 = 1.1

• Variance: Average of the squared differences from the Mean.

– Population Variance: $\sigma^2 = \frac{\sum_{i=1}^N (x_i - \mu)^2}{N}$ – Sample Variance: $s^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}$

• Standard Deviation: Square root of the variance.

– Population Standard Deviation: $\sigma = \sqrt{\sigma^2}$

5

- Sample Standard Deviation: $s = \sqrt{s^2}$

11 Measures of Dispersion 2/2

11.1 When to use each measure

- The range is great for a quick overview, but it is sensitive to outliers.
- Variance and standard deviation are more robust and provide a clearer picture of the spread in your data.

12 Setting-up R & RStudio & Google Colab

