
Getting Started with R
Part 1

Table of contents

1 Programming in R 2

2 Why R? 3

3 Variables 3

4 Naming Variables 3

5 Assignment 3

6 Displaying Variable Value 4

7 Data Types 4

8 Accessing Data Elements 5

9 Checking Object Type 7

10 Changing Object Type 8

11 Special Values 8

12 Factors 9

13 Size of Objects 9

14 Mathematical Operations 10

15 Order of Operations 10

16 Logical Operations 11

1

17 Vector and Matrix Operations 11

18 Useful Functions 12

19 Sorting and Ranking 13

1 Programming in R

• Programming: Writing instructions for a computer to perform specific tasks.

• R Language: A language and environment designed for statistical computing and
graphics.

2

2 Why R?

• Comprehensive Statistical Analysis: R provides a wide array of statistical tests,
models, and analyses.

• Rich Visualization Libraries: Libraries like ggplot2 allow for sophisticated data
visualizations.

• Open Source: Free to use, and benefits from a large community that contributes
packages and updates.

• Extensible: Over 15,000 packages in the CRAN repository for various applications.
• Data Handling Capabilities: R can process both structured and unstructured data.
• Platform Independent: Runs on various operating systems.

Notable Companies Using R: Google, Facebook, Airbnb, Uber, and many more use R for
data analysis.

3 Variables

• Definition: A storage area in programming to hold and manipulate data.

• Importance: Allows for data storage, retrieval, and manipulation.

• Analogy: Think of variables as labeled storage boxes.

4 Naming Variables

• Begin with a letter
• Avoid spaces (use underscores)
• Case-sensitive.

age <- 25
student_name <- "John"
pi_value = 3.14

5 Assignment

Storing a value inside a variable.

3

https://www.google.com/
https://www.facebook.com/
https://www.airbnb.com/
https://www.uber.com/

x <- 5 # Preferred in R
total = 100 # Also works
7 -> z # Rare

6 Displaying Variable Value

• Type the variable name, or

x

[1] 5

• Use the print() function

print(total)

[1] 100

7 Data Types

Classifications of data based on its nature.

number = 5 # Numeric (Scalar)
number

[1] 5

messsage = "Hello" # Character (String)
messsage

[1] "Hello"

flag = TRUE # Logical
flag

[1] TRUE

4

grades_vector = c(90, 85, 88) # Vector
grades_vector

[1] 90 85 88

matrix_data = matrix(1:6, nrow=2) # Matrix
matrix_data

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

students_df = data.frame(Name=c("Anna", "Bob"),
Age=c(23, 25)) # Dataframe

students_df

Name Age
1 Anna 23
2 Bob 25

info = list(Name="John", Scores=c(90, 85, 88)) # List
info

$Name
[1] "John"

$Scores
[1] 90 85 88

8 Accessing Data Elements

Methods to extract specific data or subsets from data structures.

• Using Square Brackets:

1. For vectors: Extract specific elements

5

third_grade = grades_vector[3]
third_grade

[1] 88

2. For matrices: Extract rows, columns, or individual elements.

first_row = matrix_data[1,]
first_row

[1] 1 3 5

second_column = matrix_data[,2]
second_column

[1] 3 4

element_1_2 = matrix_data[1,2]
element_1_2

[1] 3

3. For data frames: Extract rows, columns, or specific data.

Anna_data = students_df[1,]
Anna_data

Name Age
1 Anna 23

Age_column = students_df[, "Age"]
Age_column

[1] 23 25

4. Exclude specific elements using negative indices:

6

all_but_third = grades_vector[-3]
all_but_third

[1] 90 85

5. Access rows using boolean logic:

students_above_23 = students_df[students_df$Age > 23,]
students_above_23

Name Age
2 Bob 25

• Using $ for Data Frames: To access specific columns by name.

ages = students_df$Age
ages

[1] 23 25

9 Checking Object Type

• Purpose: To identify the data type or structure of an object.
• Function: class()

class(number)

[1] "numeric"

class(grades_vector)

[1] "numeric"

class(students_df)

[1] "data.frame"

7

10 Changing Object Type

• Purpose: To convert data from one type to another.
• Functions: as.numeric(), as.character(), as.logical(), etc.

number

[1] 5

class(number)

[1] "numeric"

converted_number = as.character(number)
converted_number

[1] "5"

class(converted_number)

[1] "character"

• Q: What will happen when running the following line?

converted_number + 5

• A: Error in converted_number + 5: ! non-numeric argument to binary operator

11 Special Values

• NA: Missing data
• Inf: Infinity e.g., 10/0
• NaN: Result of invalid operations e.g., 0/0
• NULL: Absence of a value

8

12 Factors

Data type for categorical data

gender = factor(c("male", "female", "male"))
gender

[1] male female male
Levels: female male

levels(gender)

[1] "female" "male"

• Question: what will be the output of the following? as.numeric(gender)

• Answer: 2, 1, 2

13 Size of Objects

• Purpose: Determine dimensions or length.

length(grades_vector)

[1] 3

nrow(students_df)

[1] 2

ncol(students_df)

[1] 2

dim(students_df)

[1] 2 2

9

14 Mathematical Operations

• +: Addition
• -: Subtraction
• *: Multiplication
• /: Division
• ^: Exponentiation (raising to a power)
• %%: Modulus (remainder after division)

result_add = 3 + 5 # Addition
result_sub = 8 - 3 # Subtraction
result_mul = 4 * 7 # Multiplication
result_div = 8 / 2 # Division
result_exp = 2^3 # Exponentiation
result_mod = 8 %% 3 # Modulus

15 Order of Operations

PEDMAS Rule:

• P: Parentheses - Always start with operations inside parentheses or brackets.
• E: Exponents - Next, handle powers and square root operations.
• MD: Multiplication and Division - Process them as they appear from left to right.
• AS: Addition and Subtraction - Handle them last, moving from left to right.

• Q: 3 + 5 * 2

• A: 13

• Q: (3 + 5) * 2

• A: 16

• Q: 2 ^ 2 * 3

• A: 12

• Tip: Always use parentheses for clarity, even if not strictly needed.

10

16 Logical Operations

Operations that return TRUE or FALSE based on certain conditions:

• ==: Equal to
• !=: Not equal to
• <: Less than
• >: Greater than
• <=: Less than or equal to
• >=: Greater than or equal to
• &: Logical AND
• |: Logical OR
• !: Logical NOT

(3 < 4) & (7 > 6)
(3 > 4) | (7 > 6)
!(5 == 5)

17 Vector and Matrix Operations

grades_vector

[1] 90 85 88

grades_vector + c(5, 5, 5)

[1] 95 90 93

grades_vector * 1.1

[1] 99.0 93.5 96.8

matrix_data

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

11

matrix_data * 2

[,1] [,2] [,3]
[1,] 2 6 10
[2,] 4 8 12

matrix_data %*% t(matrix_data)

[,1] [,2]
[1,] 35 44
[2,] 44 56

18 Useful Functions

paste("Hello", "World!", sep=" ")

[1] "Hello World!"

c("apple"=5, "banana"=10)

apple banana
5 10

colnames(students_df)

[1] "Name" "Age"

min(grades_vector)

[1] 85

12

highest_grade = max(grades_vector)
highest_grade

[1] 90

which(grades_vector == highest_grade)

[1] 1

19 Sorting and Ranking

1. sort(): Organize elements in ascending or descending order.

numbers = c(5, 2, 9, 3)
sort(numbers)

[1] 2 3 5 9

2. order(): Returns the indices that would arrange the data into ascending or descending
order.

names = c("Vicky", "Cristina", "Barcelona")
order(names)

[1] 3 2 1

3. rank(): Provides the rank of each element when the data is sorted. In case of ties, it
assigns the average rank.

scores = c(85, 95, 85, 90)
rank(scores)

[1] 1.5 4.0 1.5 3.0

Briefly,

• sort() directly arranges the data.
• order() provides indices for the arranged data.
• rank() gives the position of each data point in the sorted order.

13

	Programming in R
	Why R?
	Variables
	Naming Variables
	Assignment
	Displaying Variable Value
	Data Types
	Accessing Data Elements
	Checking Object Type
	Changing Object Type
	Special Values
	Factors
	Size of Objects
	Mathematical Operations
	Order of Operations
	Logical Operations
	Vector and Matrix Operations
	Useful Functions
	Sorting and Ranking

