
Getting Started with R
Part 1
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1 Programming in R

• Programming: Writing instructions for a computer to perform specific tasks.

• R Language: A language and environment designed for statistical computing and
graphics.
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2 Why R?

• Comprehensive Statistical Analysis: R provides a wide array of statistical tests,
models, and analyses.

• Rich Visualization Libraries: Libraries like ggplot2 allow for sophisticated data
visualizations.

• Open Source: Free to use, and benefits from a large community that contributes
packages and updates.

• Extensible: Over 15,000 packages in the CRAN repository for various applications.
• Data Handling Capabilities: R can process both structured and unstructured data.
• Platform Independent: Runs on various operating systems.

Notable Companies Using R: Google, Facebook, Airbnb, Uber, and many more use R for
data analysis.

3 Variables

• Definition: A storage area in programming to hold and manipulate data.

• Importance: Allows for data storage, retrieval, and manipulation.

• Analogy: Think of variables as labeled storage boxes.

4 Naming Variables

• Begin with a letter
• Avoid spaces (use underscores)
• Case-sensitive.

age <- 25
student_name <- "John"
pi_value = 3.14

5 Assignment

Storing a value inside a variable.
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x <- 5 # Preferred in R
total = 100 # Also works
7 -> z # Rare

6 Displaying Variable Value

• Type the variable name, or

x

[1] 5

• Use the print() function

print(total)

[1] 100

7 Data Types

Classifications of data based on its nature.

number = 5 # Numeric (Scalar)
number

[1] 5

messsage = "Hello" # Character (String)
messsage

[1] "Hello"

flag = TRUE # Logical
flag

[1] TRUE
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grades_vector = c(90, 85, 88) # Vector
grades_vector

[1] 90 85 88

matrix_data = matrix(1:6, nrow=2) # Matrix
matrix_data

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

students_df = data.frame(Name=c("Anna", "Bob"),
Age=c(23, 25)) # Dataframe

students_df

Name Age
1 Anna 23
2 Bob 25

info = list(Name="John", Scores=c(90, 85, 88)) # List
info

$Name
[1] "John"

$Scores
[1] 90 85 88

8 Accessing Data Elements

Methods to extract specific data or subsets from data structures.

• Using Square Brackets:

1. For vectors: Extract specific elements
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third_grade = grades_vector[3]
third_grade

[1] 88

2. For matrices: Extract rows, columns, or individual elements.

first_row = matrix_data[1,]
first_row

[1] 1 3 5

second_column = matrix_data[,2]
second_column

[1] 3 4

element_1_2 = matrix_data[1,2]
element_1_2

[1] 3

3. For data frames: Extract rows, columns, or specific data.

Anna_data = students_df[1,]
Anna_data

Name Age
1 Anna 23

Age_column = students_df[, "Age"]
Age_column

[1] 23 25

4. Exclude specific elements using negative indices:
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all_but_third = grades_vector[-3]
all_but_third

[1] 90 85

5. Access rows using boolean logic:

students_above_23 = students_df[students_df$Age > 23,]
students_above_23

Name Age
2 Bob 25

• Using $ for Data Frames: To access specific columns by name.

ages = students_df$Age
ages

[1] 23 25

9 Checking Object Type

• Purpose: To identify the data type or structure of an object.
• Function: class()

class(number)

[1] "numeric"

class(grades_vector)

[1] "numeric"

class(students_df)

[1] "data.frame"
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10 Changing Object Type

• Purpose: To convert data from one type to another.
• Functions: as.numeric(), as.character(), as.logical(), etc.

number

[1] 5

class(number)

[1] "numeric"

converted_number = as.character(number)
converted_number

[1] "5"

class(converted_number)

[1] "character"

• Q: What will happen when running the following line?

converted_number + 5

• A: Error in converted_number + 5: ! non-numeric argument to binary operator

11 Special Values

• NA: Missing data
• Inf: Infinity e.g., 10/0
• NaN: Result of invalid operations e.g., 0/0
• NULL: Absence of a value
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12 Factors

Data type for categorical data

gender = factor(c("male", "female", "male"))
gender

[1] male female male
Levels: female male

levels(gender)

[1] "female" "male"

• Question: what will be the output of the following? as.numeric(gender)

• Answer: 2, 1, 2

13 Size of Objects

• Purpose: Determine dimensions or length.

length(grades_vector)

[1] 3

nrow(students_df)

[1] 2

ncol(students_df)

[1] 2

dim(students_df)

[1] 2 2
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14 Mathematical Operations

• +: Addition
• -: Subtraction
• *: Multiplication
• /: Division
• ^: Exponentiation (raising to a power)
• %%: Modulus (remainder after division)

result_add = 3 + 5 # Addition
result_sub = 8 - 3 # Subtraction
result_mul = 4 * 7 # Multiplication
result_div = 8 / 2 # Division
result_exp = 2^3 # Exponentiation
result_mod = 8 %% 3 # Modulus

15 Order of Operations

PEDMAS Rule:

• P: Parentheses - Always start with operations inside parentheses or brackets.
• E: Exponents - Next, handle powers and square root operations.
• MD: Multiplication and Division - Process them as they appear from left to right.
• AS: Addition and Subtraction - Handle them last, moving from left to right.

• Q: 3 + 5 * 2

• A: 13

• Q: (3 + 5) * 2

• A: 16

• Q: 2 ^ 2 * 3

• A: 12

• Tip: Always use parentheses for clarity, even if not strictly needed.
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16 Logical Operations

Operations that return TRUE or FALSE based on certain conditions:

• ==: Equal to
• !=: Not equal to
• <: Less than
• >: Greater than
• <=: Less than or equal to
• >=: Greater than or equal to
• &: Logical AND
• |: Logical OR
• !: Logical NOT

(3 < 4) & (7 > 6)
(3 > 4) | (7 > 6)
!(5 == 5)

17 Vector and Matrix Operations

grades_vector

[1] 90 85 88

grades_vector + c(5, 5, 5)

[1] 95 90 93

grades_vector * 1.1

[1] 99.0 93.5 96.8

matrix_data

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
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matrix_data * 2

[,1] [,2] [,3]
[1,] 2 6 10
[2,] 4 8 12

matrix_data %*% t(matrix_data)

[,1] [,2]
[1,] 35 44
[2,] 44 56

18 Useful Functions

paste("Hello", "World!", sep=" ")

[1] "Hello World!"

c("apple"=5, "banana"=10)

apple banana
5 10

colnames(students_df)

[1] "Name" "Age"

min(grades_vector)

[1] 85

12



highest_grade = max(grades_vector)
highest_grade

[1] 90

which(grades_vector == highest_grade)

[1] 1

19 Sorting and Ranking

1. sort(): Organize elements in ascending or descending order.

numbers = c(5, 2, 9, 3)
sort(numbers)

[1] 2 3 5 9

2. order(): Returns the indices that would arrange the data into ascending or descending
order.

names = c("Vicky", "Cristina", "Barcelona")
order(names)

[1] 3 2 1

3. rank(): Provides the rank of each element when the data is sorted. In case of ties, it
assigns the average rank.

scores = c(85, 95, 85, 90)
rank(scores)

[1] 1.5 4.0 1.5 3.0

Briefly,

• sort() directly arranges the data.
• order() provides indices for the arranged data.
• rank() gives the position of each data point in the sorted order.
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