Principal Component Analysis (PCA) in R
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1 Introduction to PCA

Principal Component Analysis (PCA) is a statistical method used to reduce dimensionality
while retaining most of the original variance. In simple terms, PCA helps to simplify complex
data sets by focusing on the most important parts that capture the majority of the variation
in the data.
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1.1 Dimensionality Reduction Simplified

¢ Imagine you have a 3D teapot, which represents data in three dimensions: height, width,

and depth.
e Viewing the teapot from above, you see a 2D outline, reducing the dimensions from three

to two, while still capturing the essential shape of the teapot.
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1.2 How PCA Achieves Dimensionality Reduction

o Step 1: Find New View (PCA):

— PCA finds the best angle to view the teapot from above to see the most distinctive
outline.

e Step 2: Keep Important Views:

— Keeps the views (principal components) that show the most distinctive features,
and ignores the rest.

¢ Step 3: Re-draw Data:

— Re-draws the teapot using these new views, which are fewer in number (reduced
dimensions) but still show most of the distinctive features.

2 The Purple Rock Crab Dataset

2.1 Dataset Description

The dataset has 200 rows and 8 columns, describing 5 morphological measurements on 50 crab
each of two color forms and both sexes:



Figure 1: Leptograpsus variegatus



Column Description

sp species — B or 0 for blue or orange

sex as it says

index index 1:50 within each of the four groups
FL frontal lobe size (mm)

RW rear width (mm)

CL carapace length (mm)

cw carapace width (mm)

BD body depth (mm)

2.2 Exploring the Dataset

Attaching package: 'MASS'

The following object is masked from 'package:dplyr':

select

1 head(crabs)

sp sex index FL RW CL CW BD

1 81 6.7 161 19.0 7.0
2 88 7.7 181 208 74
3 92 78 19.0 224 7.7
4 96 79 201 231 82
)
6

9.8 80 203 230 82
10.8 9.0 23.0 265 9.8
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2.3 Which morphological measurements can classify the species and the sex?

FL (frontal lobe size),
RW (rear width),

e CL (carapace length),
CW (carapace width), or
BD (body depth)?



2.4 FL (frontal lobe) & RW (rear width)

1 ggplot(crabs) +

2 geom_point (aes(x = FL, y = RW, color = sp, shape = sex), size = b,
< alpha = 0.7) +
3 scale_color_manual(values = c("blue", "orange"))
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2.5 All Pairs
1 GGally::ggpairs(crabs[4:8],
2 mapping = aes(color = crabs$sp, shape = crabs$sex),
3 upper = "blank",
4 diag = "blank") +
5 scale_color_manual(values = c("blue", "orange"))

Registered S3 method overwritten by 'GGally':
method from

+.gg ggplot2
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3 Computing PCA in R

3.1 PCA of the Purple Rock Crab Dataset

1 result = prcomp(crabs[4:8], scale. = TRUE)
2 plot(result, main = "Variances of the PCs")



Variances

Variances of the PCs

———
1 summary(result)
Importance of components:

PC1 PC2 PC3 PC4 PC5
Standard deviation 2.1883 0.38947 0.21595 0.10552 0.04137

Proportion of Variance 0.9578 0.03034 0.00933 0.00223 0.00034
Cumulative Proportion 0.9578 0.98810 0.99743 0.99966 1.00000

3.2 Elements of the prcomp() result

Element Description

sdev Standard deviations of the principal components.
rotation Loadings of original variables on principal components.
center Logical indicating if data were centered.

scale Logical indicating if data were scaled.

X Principal component scores (transformed data).

rank Rank of the original data matrix.

call Call that generated the “prcomp” object.

centering Centering values (mean values of original variables).



Element Description

scaling Scaling values (standard deviations of variables).

1 str(result)

List of 5
$ sdev : num [1:5] 2.1883 0.3895 0.2159 0.1055 0.0414
$ rotation: num [1:5, 1:5] 0.452 0.428 0.453 0.451 0.451
..— attr(x, "dimnames")=List of 2
..$ : chr [1:5] "FL" "RwW" "CL" "Cw"
.. ..$ : chr [1:5] "PCi" "PC2" "PC3" "PC4"
$ center : Named num [1:5] 15.6 12.7 32.1 36.4 14
..— attr(*, "names")= chr [1:5] "FL" "RwW" "CL" "CW"

$ scale : Named num [1:5] 3.5 2.57 7.12 7.87 3.42
..— attr(x, "names")= chr [1:5] "FL" "RW" "CL" "CW"
$ x : num [1:200, 1:5] -4.92 -4.38 -4.12 -3.87 -3.82 ...

..— attr(*, "dimnames")=List of 2
$ . chr [1200] nqn non ||3|| ngn
..$ : chr [1:5] "PC1i" "PC2" "PC3" "PC4"
- attr(*, "class")= chr "prcomp"

4 Projections

In PCA, projections are the positions of your original data points on the new principal com-
ponent axes. They represent how the data looks when viewed from the perspective of the
principal components, simplifying complex, multi-dimensional data into a more manageable
form.
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4.1 Tranformed Data (Projections)

1

2

pca_df = data.frame(sp = crabs$sp,

head(pca_df)
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crabs$sex, result$x)

Sp  sex PC1 PC2 PC3 PC4 PC5
B M -4.915239 0.2677733 0.1219517 -0.0390459  0.0692952
B M -4.375197 0.0938381 0.0391337  0.0054535 -0.0030446
B M -4.118329 0.1684532 -0.0335594  0.0380015  0.0379655
B M -3.873960 0.2453925 -0.0144647 0.0190459  0.0013117
B M -3.824458 0.2236052 0.0150296  0.0544971 -0.0248217
B M  -2945564 0.2194700 -0.0383320 -0.0696657  0.0189264
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4.2 PC1 & PC2

1 ggplot(pca_df) +

2 geom_point (aes(x = PC1, y = PC2, color = sp, shape = sex), size = 5,
- alpha = 0.7) +
3 scale_color_manual(values = c("blue", "orange"))
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4.3 PC1 & PC3

1 ggplot(pca_df) +

2 geom_point (aes(x = PCl, y = PC3, color = sp, shape =
o alpha = 0.7) +

3 scale_color_manual(values = c("blue", "orange"))

sex), size = 5,
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4.4 PC2 & PC3

1 ggplot(pca_df) +

2 geom_point (aes(x = PC2, y = PC3, color = sp, shape = sex), size = 5,
< alpha = 0.7) +
3 scale_color_manual(values = c("blue", "orange"))
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5 Loadings

Loadings in PCA are the coefficients that multiply each standard unit of the original variables
to get the principal component scores. Loadings are weights indicating the contribution of
each variable to each principal component.
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5.1 Loadings of Original Measurements on the PCs

1 loadings = data.frame(Variable = row.names(result$rotation),
- result$rotation)

2 loadings

Variable PC1 PC2 PC3 PC4 PCh
FL FL 0.4520437 0.1375813 0.5307684 0.6969234 0.0964916
RW RW 0.4280774 -0.8981307 -0.0119791 -0.0837032 -0.0544176
CL CL 0.4531910 0.2682381 -0.3096816 -0.0014446 -0.7916827
CW CW 0.4511127 0.1805959 -0.6525696 0.0891878 0.5745267
BD BD 0.4511336 0.2643219 0.4431610 -0.7066364 0.1757433

5.2 Loadings on PC1

1

ggplot (loadings) + geom_bar(aes(x = Variable, y = PC1), stat =
~ '"identity", alpha =

0.7)
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5.3 Loadings on PC2

1 ggplot(loadings) + geom_bar(aes(x = Variable, y = PC2), stat =
- "identity", alpha = 0.7)
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5.4 Loadings on PC3

1 ggplot(loadings) + geom_bar(aes(x = Variable, y = PC3), stat =
o "identity", alpha = 0.7)
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6 Appendix

6.1

Mathematics of PCA

Step 1: Standardization:

— Shift and scale your data so that each trait has the same importance.
. _ XX
— Formula: X ; ===
Step 2: Covariance Matrix Computation:

— Find relationships between different traits by calculating the covariance matrix.
— Formula: Covariance Matrix = —15 3 (X9 — X)(Xgq — X)7

Step 3: Eigen Decomposition:

— Find the “main” patterns of variation (principal components).
— Formula: v = v

Step 4: Sort Eigenvectors:
— Rank these patterns by how much variation they show.
Step 5: Select Principal Components:

— Pick the top patterns you are interested in.
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e Step 6: Project Data:

— Re-draw your data using these new patterns as axes.
— Formula: Y = X W

6.2 Covariance Matrix

1. Definition:

e The covariance matrix is a square matrix that captures the relationships (or co-
variances) between each pair of variables in a multi-dimensional dataset. Each
entry in the matrix represents the covariance between two different variables.

2. Covariance:

e Covariance is a measure that tells you how two variables change together. If they
tend to increase together, the covariance is positive; if one decreases while the other
increases, the covariance is negative.

3. Diagonal Elements:

e The diagonal elements of the covariance matrix are the variances of each variable,
i.e., the covariance of a variable with itself.

4. Symmetry:

e The covariance matrix is symmetric, meaning the value of covariance between vari-
able ¢ and variable j is the same as the covariance between variable j and variable
i.

6.3 Eigenvectors in PCA

1. Direction of Maximum Variance:

e The eigenvectors of the covariance matrix represent the directions of maximum
variance in the data. These are the directions in which the data spread out the
most.

2. Orthogonality:

e The eigenvectors are orthogonal to each other, meaning they are at right angles
to each other in the multi-dimensional space. This orthogonality ensures that each
principal component (eigenvector) captures a unique and uncorrelated aspect of the
data’s structure.

3. Principal Components:
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e The eigenvectors, also known as the principal components in PCA, provide a new set
of axes onto which the data is projected. This projection reduces the dimensionality
of the data while retaining as much of the original variance as possible.

4. Ranking and Selection:

e The eigenvalues associated with each eigenvector indicate the amount of variance
explained by that eigenvector. By ranking the eigenvectors based on their eigenval-

ues, you can select the top eigenvectors that capture the most significant patterns
of variance within the data.

5. Data Compression and Noise Reduction:
o By selecting a subset of eigenvectors (principal components), you essentially com-

press the data, retaining only the most important features while discarding the
noise.

6.4 About the Purple Rock Crab Image

o Image credit: Damon Tighe
o Image source: https://flic.kr/p/9eXoGK
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